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AbstracL We have investigated mesoscopic conductance RucNntions in a GaAs quantum well 
with five electrically quantized lwo-dimensional (w) subbands occupied. In c o n a t  to the case 
of a single occupied subband. where the fluctuations depend only on the component of magnetic 
field perpendicular to the plane of the electrons. in our multi-subband svucmes the conductance 
RucNations occur even in a magnetic field panllel to the plane. We attribute the fluctuations to 
npid electron-impurity scaUering between different ZD subbands which leads to quasi-30 motion 
of electrons within the quanNm well. We are able to confirm the ID chvacter of the RucNations 
by correlations between Ihe magnetoresistances obsere i  when the magnetic field is applied at 
various angles relative to the plane of the quantum well. 

In recent years there has been a great deal of interest in the transport properties of structures 
of reduced dimensionality, motivated both by the possibility of usable devices and by the 
availability of suitable technology for their construction. Usually the electrons are confined 
in one or more dimensions so that their motion is restricted to two (zD). one (ID) or even 
zero (OD) dimensions. There is also the possibility of more than one ZD subband being 
present in a system. Providing the number of subbands is not too great, the dimensionality 
of the system is not well defined and is in some sense intermediate between two and three. 
There is another sense in which conductors are often referred to as qUaSi-lD or ZD, which is 
occasionally confusing since it is different to the quantum mechanical confinement described 
above. In this case the relevant length scale is not the wavelength of the electron but the 
phase coherence length of the electron, 1+ which must be compared to the dimensions of the 
wire. For example, if 1, is smaller than the length of a wire and its width, but larger than 
its thickness, the wire is said to be quasi-20 and when considering phenomena such as weak 
localization [l] or universal conductance fluctuations [2,3] (UCF) it is necessary to apply 
formulae which are suitable for their dimensionality. Thus a wire can be quasi-ZD even if 
its ‘me’ dimensionality is 3D, i.e. the electrons are free to move in all three directions. 

In this paper we describe measurements on a wire which has five 2D subbands occupied 
and is quasi-zD or qUasi-ID, depending on temperature, with respect to l+ .  We study UCF 
which are observed in the wire as the magnetic field, B, is increased. The fluctuations are 
due to quantum mechanical interference of electron trajectories within the wire; the magnetic 
flux changes the phase difference between the trajectories (31. For a strictly ZD system, only 
the component of B perpendicular to the motion of the electrons is important because only 
the flux enclosed by the electron trajectories contributes to the phase difference [4]. On 
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the other hand, for a true 3D system such as a metallic wire, UCF [5] may be observed for 
all directions of magnetic field. For our wires, we are able to study the dependence of 
the UCF on the angle of B relative to the plane of the quantum well and hence study the 
dimensionality of the system. um are observable for all directions of B indicating that the 
motion of electrons in our multi-subband wire has a 3D character. We also report, for the 
first time, the angular correlation of UCF as B is rotated. When B is almost parallel to the 
length of the wire, we find that the UCF spectrum is sensitive to angle on a scale e 0.1". 

The samples were grown by molecular beam epitaxy and consist of a 40 nm 
GaAs/(Alo,,Gao.~)As quantum well doped by Si donors and Be acceptors in concentrations 6 
and 4 x IOz4 respectively. The compensation was used to reduce the mobility and gain 
a larger amplitude of UCF. We have measured the electron concentration n % 7.8 x 
which means that five 2D subbands are occupied in the 2DEG. The energy separation between 
the bottoms of adjacent subbands is 9,16,22 and 38 meV in order from the lowest to 
the highest subband, assuming a square confinement potential. The mobility was found 
to be p = 640 cm2 V-I s-' , corresponding to an elastic mean free path, 1 = 15 nm 
and a broadening of the energy levels of 13 meV. Electron beam lithography and dry 
etching techniques were employed to fabricate multi-terminal wires with a conducting 
width, w of about 0.5 p m  and separation between adjacent pairs of voltage probes of 
1 pm. The transport properties of the wires were measured using standard low-frequency 
lock-in techniques, magnetic fields up to 12 T and temperatures between 0.3 and 50 K. 
Note that w >> I and w,s e 1 for all magnetic fields. The wires were mounted on a 
rotation probe which allowed us to monitor changes in the angle between the plane of the 
wire and the magnetic field B with accuracy better than 0.1". The inset in figure 1 shows 
the geometry of rotation. Usually we rotated the wires so that the in-plane component 
of B was parallel to the current direction along the length of the wire. The angle 0 
was monitored by measuremen& of the Hall resistance Rxy,  which is proportional to the 
perpendicular component of magnetic field, BL = B sin 0. When B is parallel to the plane 
of the quantum well, R,,(B) = 0. Measurements at high temperatures (50 K). when the 
UCF are negligibly small, allow us to find the parallel configuration with an experimental 
accuracy of 0.25". To allow a simultaneous measurement of the angle and the UCF most of 
the experiments were carried out in the Hall configuration, Rxy ,  rather than the more usual 
longitudinal geometry, Rzx. 

Figure 1 shows examples of conductance fluctuations for 0'. i.e. B parallel to the current, 
and 90" in the Hall geometry at T = 2.5 K. For 8 = go", the linear component of the Hall 
resistance Rxy has been subtracted leaving only the fluctuating part of the resistance. The 
fluctuations in perpendicular field are the well known uCF. We have analysed the detailed 
behaviour of the UCF in the perpendicular field for both Rzy and R,, and found good 
qualitative and quantitative agreement with the standard theory 131. The Lee-Stone (LS) 
correlation field ABc, effectively the typical quasi-period of the UCF, and the amplitude of 
fluctuations both can be described by a single parameter, the phase coherence length of 
the electrons 1) which is - 0.4 pm at 2.5 K. For brevity, we omit further details since 
UCF in GaAs quantum wires have been discussed in many previous publications (see e.g. 
[6,7]). On the other hand, the conductance fluctuations (CF) with the magnetic field parallel 
to the zDEG have not been discussed in the literature. In several earlier publications the 
scaling behaviour of UCF versus the angle has been investigated for a single subband ZDEG 
but no CF in parallel field were found [4]. Two major features of the CF at 0 = 0" are 
readily seen in figure 1.  First, the amplitude of CF is approximately the same for both field 
directions. Secondly, the quasi-period of fluctuations at 0 = 0" is much larger than the 
period in perpendicular field. 
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Figure 1. Conductance fluctuations in B Hall configuration for T = 2.5 K with the magnetic 
field in the plane of (upper curve) and perpendicular lo (lower curve) the quantum well. The 
vedcal scale is the same for both curves and the linear variation with magnetic field has been 
subtracted from the lower curve. The insel shows the definition of 8 .  

To show that the CF for 0" in figure 1 are not due to an accidental misalignment between 
magnetic field and the plane of the D E G ,  we plot in figure 2 a number of curves for a range 
of small angles around 8 0'. The quasi-period of the fluctuations is the same for all angles 
plotted, indicating that a small 'leakage' of the perpendicular component of B cannot be 
responsible for these CF. If this were the case. the quasi-period of the fluctuations would 
change significantly over the angular range shown and, in particular, would be proportional 
to sine. Furthermore, for small rotations, say 10.5". the first few fluctuations in low 
magnetic fields, B c 1.5 T, are the same on all the curves (see figure 2). This demonstrates 
directly that it is the parallel field component which is principally responsible for the 
fluctuations at small angles. On the other hand, at high magnetic fields the curves in 
figure 2 become decorrelated for angular shifts of less than 0.25". This is attributed to the 
effect of the perpendicular component of B as discussed below. 

We show first the difference between the curves in figure 2 is due to the perpendicular 
component of magnetic field, BI. This is most simply seen by noting that the 
magnetoresistance for, say, *0.5" is different to that at -0.5" although the parallel field 
component is identical for the two cases. We can also present a more quantitative argument. 
With increasing total magnetic field, the difference in Bl between successive curves for 
different angles increases and at some point it reaches a value of BI ,  = G#o/l$ where 
& = h/e, is the flux quantum and C is a constant close to 1. At this point the difference in 
BI is sufficient to change interference between most of phase-coherent electron trajectories 
inside the sample (due to the Aharonov-Bohm effect), so the two curves are effectively 
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Figure 2. Hall resismce a! T = 2.5 K for several directions of magnetic field close Lo Ihe 
parallel orientation. 

decorrelated. The difference in parallel field for small rotations is vanishingly small, - 1 mT at 10 T for a rotation of 1". Unfortunately, our data do not allow us to provide 
a full statistical analysis of the correlation between resistance cuwes at various angles and 
in various magnetic fields; the task would require hundreds of traces at different angles. 
Nevertheless, for a simple quantitative analysis we can define an angular correlation field 
Bo as the lowest magnetic field where a magnetoresistance curve for a particular angle B 
exhibits a phase shift of 180" (i.e. a maximum becomes a minimum or vice versa) with 
respect to the curve at B = 0". Figure 3 illustrates this definition of Bo. Note that it does 
not matter if the curve labelled at 0 = 0" has a slight angular error since sin 0 rx B for these 
small angles. In figure 4 we plot the perpendicular component of the angular correlation 
field, Bo sin 0 ,  for different small angles. The perpendicular correlation field is independent 
of the angle and is about 0.06 T. This value is in excellent agreement with thc value (0.06 T) 
of the magnetic field which causes a similar change (i.e. from maximum to minimum or vice 
versa) of fluctuations on magnetoresistance curves for 0 = 90". Note that the L e d t o n e  
correlation field [3], AB,, is expected to be of approximately a third of this field [S] and is 
measured to be 0.02 T at thii temperature for the perpendicular configuration. 

We now address the behaviour of the conductance fluctuations due to the field parallel 
to the plane of the ZDEG. First we have calculated their root mean square amplitude (7 Q at 
2.5 K) and found that it is exactly the same value as the UCF amplitude in perpendicular field. 
This indicates strongly that CF for B = 0" are also due to changes in electron interference. 
On the other hand, this does not necessary imply that the interference variation is due 
to the Aharonov-Bohm effect as in the case of perpendicular field. Other mechanisms 
may also be possible. For instance, scattering potentials of impurities in the sample may be 
modified by the strong parallel magnetic field. This would lead to CF of the same amplitude, 
even if only a few impurities are affected since the CF are sensitive to changes of a single 
scatterer in a phase-coherent area [9]. Furthermore, wavefunctions of conduction electrons 
or, semiclassically, electron trajectories are influenced by the parallel magnetic field which 
may also lead to CF [IO, 111. 
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Figure 3. Magnetoresistance at angles of On and 0.75' showing the criterion for definition of 
B g = 4 T .  

I , l , I I l  0.00 ' ' I ' ' ' 
02 0.4 0.6 0.8 1.0 12 1.4 

e (degee) 
Figure 4. The perpendicolar component of the angular correlation field, Be, planed ngaigainst 
angle of magnetic held. The dashed line is a guide to the eye. 

Tbe origin of the observed CF in parallel field becomes clear if we compare L e d t o n e  
correlation fields for the two field directions [3,12]. The correlation field for the UCF 
in the perpendicular magnetic field ABc = 0.02 T while for the parallel field we found 
AB, = 0.2 T. If we assume that the m in the parallel field are due to the Aharonov-Bohm 
effect, this order of magnitude difference can he interpreted as an order of magnitude smaller 
phasecoherent area S for the case 6 = 0" since the correlation field AB,  - &/S. For the 
case of a 3D metal film, S = 1; for the perpendicular case and l+/d for the parallel case [31, 
where d is the thickness of the film, which gives Q / d  for the ratio of the correlation fields. 
From this expression we find d = 40 nm, in agreement with the width of the quantum 
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Figure 5. AR:, = Rxy(.O) - RjY@ = OD) plotted against the perpendicular component of 
magnetic field for two values of the angle of magnetic field at T = 2.5 K. The solid line is 
8 = 0.50" and he dashed line for 8 = 0.25" 

well. Thus, we conclude that the observed fluctuations in the parallel field behave exactly 
as mesoscopic fluctuations expected for a 3D metal film of a thickness 40 nm. 

Further conha t ion  that the CF for 0 = 0" in our samples are due to the Aharonov- 
Bohm variation of the phase along quasi-3D trajectories comes from detailed consideration 
of the magnetoresistance curves in figure 2 If the effects of parallel and perpendicular 
fieIds were due to independent phenomena, then the magnetoresistance changes A R  for any 
angle could be written as 

A R ( B )  = A R I I  + A R I  (1) 

where ARll and A R I  are fluctuating parts of the magnetoresistance due to parallel and 
perpendicular fields, respectively. Using equation (1) for the data shown in figure 2, we 
plot in figure 5 the fluctuating component of the Hall reistance ARxY (that is, the measured 
Hall resistance minus the Hall resistance for 0 = 0") against B l  for two different small 
angles, 0.25" and 0.5". If equation (1) were valid, the curves in figure 5 would be identical 
since BII is essentially the same for both. In practice the plotted curves are very different. 
We conclude that equation (1) is false and the fluctuations due to the different components 
of magnetic field are not independent. Note thac although the Aharonov-Bobm effect itself 
is dependent only on the magnetic flux (a scalar quantity) threading a particular interference 
loop, figure 5 illustrates that it is not simply a matter of adding the effects of the flux in 
the two orthogonal directions to give the resistance. This absence of the scalar addition is 
entirely expected for UCF in the true 3D case and to explain this behaviour qualitatively, 
we plot in figure 6 a computer simulated trajectory for 3D diffusive electron motion in 
the limit 0 ,s  <( 1. Since a typical 3D trajectory is not flat, an electron moving along it 
picks up the phase from both parallel and perpendicular components of magnetic field. The 
resulting phase difference between any two trajectories is unique for any field orientation 
and, therefore, the effects of perpendicular and parallel fields cannot be separated. 
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Figure 6. Simuladon of classical 3 0  elecvon trajectories in the diffusive tmspon *pime for 
ukr << 1 .  

In conclusion, we have shown the mesoscopic fluctuations in the 'dirty' multi-subband 
ZDEG persist even when the magnetic field is parallel to the plane of the ZDEG. The 
fluctuations behave quantitative exactly as one would expect for uCF in the presence 
of 3D electron motion within the quantum well. At our highest magnetic fields, the 
magnetoresistance traces are decorrelated for angular rotations as small as 0.1" when the 
field is near parallel to the plane of the quantum well. We speculate that the reason we 
observe 3D behaviour when only a few ZD subbands are occupied is due to rapid intersubband 
scattering on a time scale much shorter than the phase-coherent scattering time. This is not 
unexpected since the elastic scattering lifetime is much shorter than that due to inelastic 
scattering and the large-angle impurity scattering should be very efficient at causing inter- 
subband transitions. 
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